

	to allow the cellulose to be digested. Meat is easier to digest, hence carnivores like tigers have a shorter small intestine.		
23	i. Plasma ii. Haemoglobin present in RBCs	$1+1=2$	2
24	Sheetal's action voluntary because rushing out to the kitchen was a conscious controlled or voluntary. The smoke and smell were perceived by specific receptors in the sense organs and signals are sent to the brain, from where signals are sent to the effectors. (Any relevant or logical explanation)	1/2 mark for each term used $1 / 2+1 / 2+$ $1 / 2+1 / 2=$ 2	2
25	Hypermetropia/ Long-sightedness Correction -using convex lens	1 (1/2) $(1 / 2)$	2
26	A food chain shows us how every living organism is dependent on other organisms for survival. Explains the path of energy flow within the ecosystem	1+1	2
	SECTION - C Q.no. 27 to 33 are short answer questions.		
27	$\underset{\text { (Lead nitrate) }}{2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})} \xrightarrow[\text { (Lead oxide) }]{\text { (a) }}+\underset{$ (Nitrogen dioxide) $}{4 \mathrm{NO}_{2}(\mathrm{~g})}+\underset{\text { (Oxygen) }}{\mathrm{O}_{2}(\mathrm{~g})}$(b) Nitrogen dioxide(c)Thermal decomposition reaction	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	3
28	(a) $\begin{aligned} & 2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\text { Heat }} 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{SO}_{2}(\mathrm{~g}) \\ & 2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \xrightarrow{\text { Heat }} 6 \mathrm{Cu}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g}) \end{aligned}$ Copper is obtained from the sulphide ore by heating in sufficient supply of air. (b) Anode -the impure metal M Cathode -a thin strip of pure metal M.	$(1+1)$ $(1 / 2+$ $1 / 2)$	3
29	Ans. i. Many plant waste products are stored in cellular vacuoles of mesophyll and epidermal cells. Waste products may be stored in leaves that fall off.	$\begin{aligned} & 1+1+1 \\ & =3 \end{aligned}$	3

	ii. Gaseous wastes like oxygen, carbon-dioxide are removed through stomata in the leaves. iii. excess of water in the removed in the form of water vapour is also excreted from the stomatal pores by the process of transpiration OR i) Respiratory rate in aquatic organisms is higher than in terrestrial organisms. As they have to take oxygen dissolved in water and this is less compared to atmospheric oxygen. ii)Capillaries are the thinnest blood vessels as they are the blood vessels present in cells and help in exchange of materials at cellular level. iii) Trachea does not collapse when there is no air in it as it has rings of cartilage around it.	$\begin{aligned} & 1+1+1 \\ & =3 \end{aligned}$	
30	i. Figure B represents the correct pattern of field lines. ii. In figure A, field lines cross each other which is not possible because if they cross each other, at the point of intersection, there would be two directions of field lines. iii. As per the figure, lines of the forces originating from poles, hence the poles of magnet facing each other are north poles.	1 1 1	3
31	a. Absolute refractive index of a medium is defined as the ratio of the speed of light in vacuum or air to the speed of light in the medium. It is denoted by n. $\mathrm{n}=$ speed of light in air/vacuum (c) / speed of light in medium (v) $\mathrm{n}=\mathrm{c} / \mathrm{v}$ b. Given, Speed of light in air, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ Speed of light in medium, $v=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\begin{aligned} n & =c / v \\ & =3 \times 10^{8} / 2 \times 10^{8} \\ & =1.5 \end{aligned}$	1 1 $1 / 2$ $1 / 2$	3
32	(a)i. Solar furnace- Concave mirror ii. Rear view mirror- Convex mirror (b) Nature of the mirror- Concave mirror(0.5 mark) $\begin{aligned} & m=-\frac{1}{5}=\frac{-(-18)}{u} \text { gives } u=-90 \mathrm{~cm} \\ & \text { use } \frac{1}{f}=\frac{1}{v}+\frac{1}{u} \\ & \begin{array}{ll} (0.5 \text { mark) } \\ \frac{1}{f}=\frac{1}{-18}+\frac{1}{-90} & \\ \text { gives } f=-15 \mathrm{~cm} & \text { (0.5 mark) } \end{array} \text { (} \quad l \end{aligned}$ OR	$1 / 2$ $1 / 2$	3

	Power of lens = Ability to converge/ diverge light rays passing through it/ reciprocal of the focal length in metres $/ \frac{1}{f}$ (in meters) (0.5 mark) SI unit of power is Dioptre(0.5 mark) Power of $1^{\text {st }}$ lens $P_{1}=\frac{100}{f 1}=\frac{100}{40 \mathrm{~cm}}=+2.5 \mathrm{D}$ (0.5 mark) Nature: Converging lens/ Convex lens (0.5 mark) Power of $2^{\text {nd }}$ lens $P_{2}=\frac{100}{f 2}=\frac{100}{-20 \mathrm{~cm}}=-5 \mathrm{D}$ (0.5 mark) Nature: Diverging lens/ concave lens (0.5 mark)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	
33	i)Formation of ozone occurs as follows: $\begin{aligned} & \mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\mathrm{uv}} \mathrm{O}_{(\mathrm{g})}+\mathrm{O}_{(\mathrm{g})} \\ & \mathrm{O}_{2(\mathrm{~g})}+\mathrm{O}_{(\mathrm{g})} \stackrel{\mathrm{uv}}{\longleftrightarrow} \mathrm{O}_{3(\mathrm{~g})} \end{aligned}$ ii)Any two ways of disposal-recycling /reusing	$\begin{aligned} & 2+1 / 2+1 / 2 \\ & =3 \end{aligned}$	3
	SECTION - D		
34	a) $\mathrm{C}_{3} \mathrm{H}_{6}$ is an alkene which is unsaturated and $\mathrm{C}_{4} \mathrm{H}_{10}$ is an alkane, which is saturated. Hence, $\mathrm{C}_{3} \mathrm{H}_{6}$ is more likely to undergo an addition reaction. b)i) $\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{COOH}$ Functional group- COOH ii) $\mathrm{CH} 3-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{CH} 2-\mathrm{Br}$ Functional group- Br	$(1+1)$ 1(1/2 equatio n+ $1 / 2$ catalyst) 1 1	5
	OR a) (i) Calcium hydroxide solution in test tube B will become milky due to the formation of calcium carbonate. (ii) Reaction in test tube A : $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	1 1 1	

| | (iii) If ethanol is given instead of ethanoic acid, similar changes won't be
 observed because ethanol does not react with sodium
 hydrogen carbonate. | 1 |
| :--- | :--- | :--- | :--- |

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
- Intrauterine Contraceptive Devices (IUCDs) (Lippes loop, CuT, etc.) \\
- Natural methods (rhythm method, coitus interruptus) \\
Surgical methods (vasectomy, tubectomy) \\
Three advantages of adopting contraceptive methods are: \\
- They prevent frequent or unwanted pregnancies. \\
- They prevent the transfer of sexually transmitted diseases (STDs). \\
They help to regulate the population growth.
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \times 3=1 \\
\& 1 / 2 \\
\& =5 \\
\& \text { marks }
\end{aligned}
\] \& \\
\hline 36 \& \begin{tabular}{l}
(a) Given: \(\mathrm{R}_{1}=10 \Omega ; \mathrm{R}_{2}=20 \Omega ; \mathrm{R}_{3}=30 \Omega\) According to Ohm's law, \(\mathrm{V}=\mathrm{IR}\) Given \(\mathrm{V}=12 \mathrm{~V}\) \\
i. \\
Current through resistor \(\mathrm{R}_{1}\) :
\[
\mathrm{I}_{1}=\frac{\mathrm{V}}{\mathrm{R}_{1}}=\frac{12}{10}=1.2 \mathrm{~A}
\] \\
Current through resistor \(\mathrm{R}_{2}\) :
\[
\mathrm{I}_{2}=\frac{\mathrm{V}}{\mathrm{R}_{2}}=\frac{12}{20}=0.6 \mathrm{~A}
\] \\
Current through resistor \(\mathrm{R}_{3}\) :
\[
\mathrm{I}_{3}=\frac{\mathrm{V}}{\mathrm{R}_{3}}=\frac{12}{30}=0.4 \mathrm{~A}
\] \\
(0.5+0.5+0.5) \\
ii. \\
Total circuit resistance, R
\[
\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}
\] \\
(0.5 mark)
\[
\begin{aligned}
\& \frac{1}{\mathrm{R}}=\frac{1}{10}+\frac{1}{20}+\frac{1}{30} \\
\& \frac{1}{\mathrm{R}}=\frac{11}{60} \\
\& \mathrm{R}=\frac{60}{11}=5.45 \Omega
\end{aligned}
\] \\
(0.5 mark) \\
iii.
\end{tabular} \& \(11 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 5 \\
\hline
\end{tabular}

	The total current in the circuit is $\begin{align*} \mathrm{I} & =\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3} \\ & =1.2+0.6+0.4=2.2 \mathrm{~A} \end{align*}$ mark) $\begin{aligned} \text { (b) } & \Rightarrow 1 / R p=1 / R+1 / R+1 / R+1 / R & & \text { (0.5 mark) } \\ & \Rightarrow 1 / R p=4 / R & & \\ & \Rightarrow R p=R / 4 & & (0.5 \text { mark }) \\ & \Rightarrow R p=20 / 4 & & (0.5 \text { mark }) \\ & \Rightarrow R p=5 \Omega & & (0.5 \text { mark) } \end{aligned}$	$4 x^{1 / 2}$	
	SECTION - E		
37	(i) T (ii) $(\mathrm{R}<\mathrm{P}<\mathrm{S}<\mathrm{Q}<\mathrm{T})$ (iii) Metals which are more reactive than Zinc can displace zinc from its salt solution. Therefore, Magnesium can displace Zinc from its salt solution OR The blue colour of the copper sulphate will change to green. There will be reddish brown deposit on iron nails. $\begin{aligned} \mathrm{Fe}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \\ \text { (Copper sulphate) } \end{aligned} \quad \underset{\text { (Iron sulphate) }}{\mathrm{FeSO}_{4}(\mathrm{aq})}+\mathrm{Cu}(\mathrm{~s})$	1 1 2 1 1	4
38	(i) Substances that are not broken-down biological processes are said to be non-biodegradable (ii) Changes in packaging have resulted in much of our waste becoming non-biodegradable (iii) Any two biodegradable and two biodegradable substances. OR Any two differences between biodegradable and non-biodegradable substances	1 1 $\begin{aligned} & 1 / 2+1 / 2+ \\ & 1 / 2+1 / 2= \\ & 2 \end{aligned}$	4
39	i. At 2f,Image distance= object distance From the table, $2 \mathrm{f}=30 \mathrm{~cm}$ $\mathrm{f}=30 / 2=15 \mathrm{~cm} \text { (1 mark) }$ ii. $5^{\text {th }}$ observation is incorrect (image should form at infinity as the object is placed at focus $(15 \mathrm{~cm})$ (1 mark) iii. Rays no. 2, 3 and 4 follow the laws of refraction of light. (1 mark)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	4

